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The resonance effect of a disk oscillating about 
a state of steady rotation 

By A. F. JONES 
Department of Mechanics, The Johns Hopkins University 

(Received 14 May 1969) 

The rotating system of an infinite disk beneath an unbounded fluid can exhibit 
resonance if the disk performs torsional oscillations at  a certain frequency. 
This effect is examined in detail, and the solution is shown to depend crucially 
upon the existence of a small, steady departure from the basic rotational state 
in the far field. 

1. Introduction 
The boundary-layer flow of a tidal or gravity wave, which travels over a 

smooth sea bed, was examined by Hunt & Johns (1963). A solution was ob- 
tained by a linearization procedure, which essentially proposed a first-order 
balance between the viscous, accelerative and Coriolis forces in the equation of 
motion. An interesting feature of the analysis was that when the latitude took 
a certain value, which depended on the wave frequency and the strength of the 
earth’s rotation, their linear solution was no longer valid. They did not examine 
this singularity any further. Benney (1965) considered a problem, which con- 
tained all the essential features of Hunt & Johns’s problem, but with a simpler 
geometry. In  this paper, we shall be examining this second problem and, in 
particular, we shall be concerned with analyzing the singularity it contains. 
This singularity is a resonance phenomenon, and is directly analogous to the 
effect found by Hunt & Johns. 

A semi-infinite fluid of density p and kinematic viscosity v lies above an in- 
finite disk. The disk is assumed to have a uniform angular velocity a, upon which 
are superimposed small, torsional oscillations of magnitude o, frequency CT. 

The oscillations are small in the sense that w < Q. Far from the disk we also 
suppose the fluid to have a constant speed of rotation. Although we will be 
primarily interested in the effect of an oscillating boundary on a single, basic, 
rotational state, we shall not immediately equate the angular velocity of the 
fluid at infinity to a. We shall assume there is a small difference of O(w) or less. 
This is because (as shown in Jones 1969) a zero-perturbation, far-field velocity 
does not necessarily correspond to a distant boundary that rotates with a zero 
perturbation. The difference in the steady component of the azimuthal velocities 
can be supported by the formation of Ekman layers at both near and far boun- 
daries. This should be compared with the time-dependent component of the 
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flow where only a modified Stokes layer near the oscillating (shearing) disk can 
form. 

Thus, we generalize the infinite fluid problem by allowing a steady rotational 
state in the far field with an arbitrarily assigned value. There is a tacit assump- 
tion in this, that to any value chosen for the far-field velocity there corresponds a, 
two-boundary problem, which is defined by suitable boundary conditions on the 
far surface. Thus, while our problem is quite generally posed, we are working 
under limitations. Given a one-boundary problem, we cannot necessarily deter- 
mine the two-boundary problem to which it corresponds (assuming it exists). 
Nor can we necessarily go the other way. Nevertheless, this approach does enable 
us to analyze the forms possible for the solution of the more realistic, two- 
boundary problem. 

The resonance point, our main concern, occurs when r = 2C2. The solutions that 
we obtain in this case all depend on the existence of the far-field perturbation 
velocity. They all have double boundary-layer structures, and are all determined 
by the method of matched asymptotic expansions. However, the scaling and 
exact form of the outer layer in each case depend critically on the order of 
magnitude of the perturbation at  infinity. The three orders of magnitude 
considered are: O ( w ) ,  O(w2/sl)  and O(w4/Q3). For far field perturbations smaller 
than this, we have not managed to obtain any solution, although the possible 
forms that a solution may take are discussed. Finally, the particular two- 
boundary problem is briefly examined, where a distant disk with an angular 
velocity 62 bounds the fluid. This is shown to correspond to an interior pertur- 
bation velocity of O(w2/!2). 

2. Equations 
Cylindrical co-ordinates (P,8,x") are chosen with accompanying velocity 

components (iZ,5,8). The disk is defined by the equation 2 = 0, with i = 0 
as its axis of rotation. Assuming axial symmetry, the equations of motion are: 

aiz .iz azz, -+=+-= 0, 
8 i  r az 

where f is time and 1" pressure. The boundary conditions are: 

(2.5a) 
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and 
(2 .6b)  

where A is a constant. In  using complex notation, it is to be understood that 
the real part of the equation is to be taken. The factor of two in the second 
boundary condition is a matter of convenience. 

Several simplifications of these equations are possible. (i) From the geometry 
of the problem, we assume the radial variable i can be eliminated as a similarity 
variable. (3) The equation of continuity allows the introduction of a Stokes 
stream function. (iii) It is convenient to change to a rotating co-ordinate system. 
(iv) We shall introduce dimensionless variables using as our length scale the 
Ekman layer thickness ( v /Q) t .  Thus, we define: 

8 F  
6 = 2 w i -  (2, t ) ,  

v" = Q P  -t- 2 ~ i G ( z ,  t ) ,  

iZ = - 2w ( 2 ~ / ! 2 ) + F ( z ,  t ) ,  

Z = CT-'~. 

a2 

z" = (~/2!2)*2, 

The most general form for the radial pressure gradient, compatible with the 
assumption of radial similarity, and with the boundary conditions at infinity, is 

where 

Under these transformations, (2.1) and (2 .2 )  become 

Fr"-p- -+G aF' = K+E[E""-22BFr'-G2],\ 
at 

where E and p are defined by 

p = cr/2!2, E = w/n < 1, 

I 
(2 .9 )  

and a dash represents a differentiation with respect to z .  
Equation (2 .3 )  serves only to determine the axial pressure gradient while the 

equation of continuity is automatically satisfied. The transformed boundary 

( 2 . 1 0 ~ )  
conditions are: 

F = - = o ,  on z = O ,  aF 
82 

--+ 0, ~ + { i  - (1 + 4 e K ) + } / 2 ~  as 2400, (2 .10b)  
az 

and we shall be searching for purely periodic solutions. 

3. Description of resonance 
We shall look for an asymptotic solution as 6 - t  0. The straightforward approach 

to this is to assume expansions for F and G which are power series in 6. Because 
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we are looking for a purely periodic solution, however, the boundary conditions 
suggest a more useful expansion is available to us, namely, 

F N q 0 ( z )  +&,(z)eit+e[&,(z) + li;,(z) eit+F12(x) eZit] + O(e2), (3.1) 

and similarly for G. 
These are substituted into (2.8) to (2.10). The equations for Foo and Goo are 

obtained by equating the steady terms whose coefficients are e to the power zero. 

F$ + Goo = K ,  
Ggo-F& = 0. 

The boundary conditions are: 

I Po, = Fi0 = Goo = 0, on x = 0, 

FAo+O, Goo-tK, as z+m; 
and the solution is: 

K l + i  l + i  1 - i  
F 00 ---exp - 2 [ 4 2  ( -__ J2 ‘) +%exp (-3’) - J 2 ] 3 \  

Goo =:[2-exp(-$z)-exp(-$z)]. 

The equations for Po, and Go, are derived similarly. They are: 

3’$-ipF&+Gol = 0, 

Ggl-ipGol-F& = 0, 

with the boundary conditions 

Pol = FAl = 0, Go, = 1, z = 0, 

.F&+07 Gol+O, z+m. 

When p p 1, the solution of these equations is: 

where 

(3.2a) 

(3.2b) 

(3.3) 

(3.4a) 

(3.4b) 

(3.5) 

(3.6) 

(3.7) 

We now investigate the solution as p --f 1. The most general solution of (3.4) 
(which satisfies the boundary conditions on the disk, (3.5)) is 

where b is a constant. But these expressions are unable to satisfy the boundary 
conditions a t  infinity (3.6). To see why this happens, we return to (3.4), and 
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consider the balance of terms that exist far from the disk. At a sufficient distance, 
the highest differentiated term (the viscous term) declines in importance, and 
can be neglected to  &st order in comparison with the others. Thus the first-order 
equations are: 

Provided p =l= 1, these have a solution which correctly describes the form of the 
far field solution. When p = 1, however, the equations are degenerate and be- 
come identical. This represents a resonance or feedback situation between the 
accelerative and Coriolis forces. Instead of determining the flow, (3.9) now only 
provides a first-order restriction. A supplementary equation for the flow is 
needed, and can be obtained by differentiating (3.4b) with respect to time, and 
subtracting it from (3.4a). The result of this is 

F ~ ~ - i G ~ ~  = 0. (3.10) 

Thus, although the flow has to satisfy a first-order restriction involving the 
Coriolis and accelerative forces, its actual form is determined by viscous action. 

Unfortunately, the form of solution allowed by (3.10), a second degree poly- 
nomial in z, cannot be matched to the inner solution (3.8) near the disk and also 
remain bounded at infinity. In  fact, (3.10) is not sufficiently exact. Our deter- 
mining equation must be derived from the complete equations (2.8) (withp = l ) ,  
because a solution is only possible if a far-field balance can be achieved between 
the viscous terms (which we have assumed small, in some sense) and the hitherto 
neglected non-linear terms. Proceeding as above, we differentiate the second of 
equations (2.8) with respect to time, and subtract from the first 

3) a [ at 
P”’ - iG” = 8 P’2 - 2FF’ - G2 - 2 - (QF’ - PG’) eit terms only. (3.1 1) 

We shall refer to this henceforth as the complementary equation, since it 
determines the solution when used in conjunction with the fist-order restriction 
(3.10). 

4. Resonance when K = O(1) 

We shall now proceed more formally. From the previous heuristic discussion, 
we expect to find inner and outer solutions for the flow, which can be matched 
together. The inner solution is clearly (3.8), and we shall assume that b = 0 
in these two equations (b  + 0 leads t o  homogeneous boundary conditions for the 
outer solution, which are unlikely to yield a solution). For the outer variables 

(4.1) 
we define: 

z = d ~ ,  f = € 4 3 ,  9 = G, 
which are suggested by (3.11) and (3.8). The original (2.8) thus becomes: 

18 Fluid Mech. 39 
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We assume expansions for the outer variables of the form 

and similarly for g. These are substituted into (4.2) and coefficients of different 
powers of e are equated. The steady zero-order terms lead to the result, 

foo = 0, 900 = K ,  (4.4) 

after matching to the steady inner solution (3.3). 
The first harmonic, zero-order terms of both equations are: 

and the complementary equation has to be derived as before by differentiating 
the second of equations (4.2) with respect to time, and subtracting from the first. 
If (4.4) are then used, the resulting expression simplifies to 

Finally, the solution of these equations, which is bounded at infinity and matches 
to (3.8), is: 

It should be pointed out before leaving $ 5  that the proposed inner expansion 
(3.1) is now incorrect. The matching process induces additional terms in the 
inner solution, whose orders are half-powers of E, and the expansion (3.1) must 
be amended to allow for this. Equations (3.3) and (3.8) are still the first-order 
solutions, however. 

5 .  Resonance when K = O(s) 

The solution of 94 is invalid when K = O(E) ,  because there is no longer any 
first-order steady motion. Consequently, a balance cannot be achieved in the 
compIementary equation (3.1 l), which invoIves the first products in the non- 
linear terms, since the first products are either steady or second harmonic. To 
obtain the necessary simple harmonic terms, one must consider second-product 
terms of the right-hand side. 

and (2.8) becomes 
(5.1) 

We write K = E S ,  

aF' 
at 

aG 
at 

F"' - - + G = €[A?+ F'2- 2PF" - G2], 

G" - - - F' = 24GF' - FG'], 
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with boundary conditions, 

(5.3) 1 F = F’ = 0, G = eit, on z = 0, 

F‘-tO, G+eG2-+eX, as ZJOO.  

We assume an inner expansion for F of 

P N F,,(z)eit+s[&,(z) +E;,(z)eit+E;,(z)e2it] +O(s2), (5.4) 

and a similar one for G. 
As usual, these are substituted into the equations, and terms which are multi- 

plied by the same power of E and by the same harmonic are equated. The boun- 
dary conditions are obtained similarly except, again (since this is only an inner 
solution) the outer boundary conditions of (5.3) are relaxed, and instead we 
merely forbid the occurrence of exponentially growing terms in the solution. 
The first-order, simple harmonic terms have the same equations and boundary 
conditions as before, and thus have the same solution (3.8). The only other inner 
solution we shall need is the second-order, steady component of the motion. 
The equations are 

where a bar denotes a complex conjugate. The solution takes the form 

where a, b, c are constants whose actual values we shall not need. 
For the outer expansion, the use of the new scaled variables, 

7 = €2, f = cF, g = G, (5.7) 

is suggested by (3.8) and (3.11). Series expansions for f and g are then assumed 
with the same form as the inner expansion, i.e. 

f fol(r)eit+ 4Y10(r) +f11lr) eit+f12(r)e2it1 

+ e2[fio(r) +fil(r)eit+fiz(r) e2,it+f2~(r)e34ti + 0 ( g 3 ) .  (5.8) 

The usual procedure is followed. The new variables (5.7), and their expansions 
(5.8), are substituted into the equations of motion (5.2), and terms which are 
multiplied by the same time-harmonic and the same power of E are equated. 
The following set of equations are obtained: first order, first harmonic: 

go1 = if&; (5.9) 
second order, steady: 

g10 + 810 = 2%- + f t P &  -f01J;d; -f&f01- go1 sol, 
- (f10 +.Lo)’ = goQ& + D O l K I l  - - f O l D A l  -.f019A1; 

( 5 . 1 0 ~ )  

(5.10 b)  
18-2 
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second order, second harmonic: 

- 2if;f;2 f 912 = %fhlfhl - ’f0lfh- 901 god, 

% l Z  +f;z = ( f 0 l  s&- solfbl); 

f4 - %l+ 921 = (f10 +SlO)’fb +f;2&1 - (f10 +.f1o)f0”1- (f10 +.f lO)”fOl  

-.f1zG1 - M 0 1 -  (910 + 810) 901 - 912 Pol, 

9;1- ig,, -j;1 = (910 + glo) fAl+ 90l(flO +.flO)’ + 9&1+ P01f;Z 

- (f10 +$lo) Shl -f01(910 + 810)’ -f128& -.7019;z. 

third order, &st harmonic: 

(5.1 1 a)  

(5.1 1 b)  

(5.1 2 a )  

(5.12b) 

Other equations, such as those forf,, and gll, will not be needed. The dash 
now represents a differentiation with respect to the new variable 7, of course. 

The boundary conditions for the equations are matching to the inner solution 
(3.8) and (5.6): 

( 5 . 1 3 ~ )  

and the outer restrictions of (5.3), i.e. 

fL@) = f ; o ( a )  = 0,  910(~)  = 3f. (5.13b) 

Our final objective is to obtain an equation fort,,. Two preliminary steps are 
necessary. First, equation (5.10b) has to be integrated to give an expression 
for (flo+fl0). After (5.9) has been used to eliminate gol, this can be done without 

difficulty f10  +.Lo = i(f&SOl --fOlfhl), (5.14) 

and the constant of integration is zero, because of the boundary conditions (5.13 a) .  
Secondly, (5.11) must be rearranged to give separate expressions for f i2 and g12. 
The equations can then be reduced to a single equation for fol by the following 
procedure : 

(i) Equation (5.12b) is multiplied by i, and subtracted from (5.12a), in order 
to eliminate both fzl and gzl. The resulting equation, of course, corresponds to 
the complementary equation (3.1). 

(ii) From this equation, flo, glO,flz and g,, are eliminated by substitution from 
(5.10), (5.11) and (5.14). It is interesting that f12 does not appear explicitly 
in the complementary equation, but appears only in a differentiated form, f i2 
or f Ya. This is fortunate, since i t  is impossible to integrate f &. to give a closed form 
expression for f12, as has been done for flo. 

(iii) From the equation produced by step (ii), gol may be eliminated by use of 
(5.9). It is then discovered that all the non-linear products cancel identically, 
thus leaving the equation, 

The solution of this satisfying the boundary conditions is 

f; + 2iX-f A1 = 0. 

Allowing for the scaling difference, this result is the same as the previous 
result (4.7) for the outer boundary layer. The reason is that the equations 
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of motion are doubly degenerate. The original equations are degenerate, because 
a combination of them is possible that eliminates the first-order harmonic terms. 
But the complementary equation so produced is also degenerate, since the second- 
products of the non-linear terms do not have any simple harmonic part, although 
one would expect one. The exception is the interaction between the first-order 
oscillatory flow, and the far-field, steady, azimuthal velocity. But the balance 
achieved with this is of course the same as before, and hence the results are 
equivalent. 

6. Resonance when K = O(e3) 
The solution of the previous section is invalid when K = O(e3) (i.e. X = O ( h )  ). 

The neglected fourth-products of the non-linear terms then have a harmonic 
part which is comparable to the terms that are retained to reach a solution. 

To investigate this possibility, we write: 

L%? = e2k, ( K  = @k), (6.1) 

and substitute this into (5.2). The initial analysis proceeds much as before. Inner 
expansions may be chosen of the same form as (5.4). These lead to the usual first- 
order, harmonic solution (3.8), and to the same second-order steady solution 
(5.6), but with the modification that 3? no longer appears on the right-hand side 
of (5.6b). The boundary conditions then give us 

1 5(47 + 33i) 
13642 ’ a =  

- 3 + 5 i  
13642 ’ b = -  

C = A ( 1 3 7 -  11642),) 

and unlike the previous case, the numerical value of c turns out to be relevant 
to the solution. 

For the outer expansion, the appropriately scaled variables are: 

However, it is no longer possible to utilize expansions for f and g of the form (5.8). 
For suppose one did so, and continued as before. The zero-order terms would 
give only a single equation connecting fol and go,, and similarly the second-order 
terms would provide only a single relation between fil and gil (the odd-powers 
harmonics, such as f,,, would be zero). So after eliminating fdl and g,, from the 
fourth-order equations, the resulting equation could be reduced to give only 
an equation for fol, if f21 and g,, chanced to appear in it in the combined form of 
(f2, - ig21). Since the equations are non-linear, there is no guarantee that this 
will happen. Clearly, however, this fault only arises because of the form of the 
perturbation expansion. The difficulty may be avoided by assuming aleading term 
expansion. This is essentially a Fourier series since any harmonio eintappears only 
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once; also, the coefficients are scaled so that their expected magnitudes are O(  1). 
Thus, 

and similarly for g. 
The outer scalings (6.3) and the new expansions are substituted into the equa- 

tions of motion (5.2). It is no longer possible to equate coefficients of different 
powers of e, of course. Instead the equations are Fourier analyzed. Thus one 
obtains: 

first harmonic terms: 

where the value of c is given in (6 .2) .  
To obtain the final solution, these equations are treated in a very similar 

fashion to the equations of $ 5 .  Equation ( 6 . 5 b )  is multiplied by i, and sub- 
tracted from (6.5a), to leave the complementary equation. Therest is then substi- 
tution and re-substitution into the right-hand side of this equation, to reduce 
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it to terms that are O(e4), and which are functions of fl only. It should be realized 
that, when doing this, (6.5)-(6.8) can be used in many different forms. For 
instance, ( 6 . 5 ~ )  may be truncated to: 

g, N i f ;+o(e2) .  (6.10) 

Provided this is substituted only into terms that have already been multiplied 
by e4, the omitted terms will be O(e6);  and these terms are in any case neglected 
in the final equation. 

In  the course of the analysis, it is necessary to integrate (6.6b) again to first 
order : 

but, once more, it is never necessary to integrate any expression for f z ,  since 
f2 appears only in a differentiated form. 

The most interesting stage in the reduction is reached with the equation, 

fo+.fo i(Slfl-fi.f9+0(~2); 

e4(fI - ig;) = s2[ (gl + q;)’ (f1fi + i(fo +Jo) - ifi &)I - 2ikf ;, 
+ 2k4{ (ooG23) + (01i i2)  + (m122) + (oGi22)) 

- (Gii i2)  - (00i2~)}+~4(022)f . .+  ~ ( k ) ,  (6.11) 

where a convenient shorthand is used to represent the fifth (or third) product of 
fl: the symbol fl is omitted, the number refers to the derivative, and the bar to 
its complex conjugacy. To evaluate the square bracket, it is necessary to in- 
tegrate ( f o  +fob)’ to second order. To do this, the bracket as a whole is transformed 
into an integral, 

[. * -1 = e2(91 + if;)‘{ r.71.f; + i ( f 0  +.fob, - if1 BIl,=O 

+prf‘ +f1;lf; - if; sl - ifl BI + i(io +jO)’l dr*); (6.12) 
0 

and it is then possible to substitute for everything that appears under the integral 
sign. All terms of O(e2) eventually vanish, and the remaining O(e4) terms can be 
evaluated explicitly by integration by parts. It turns out that the terms thus 
obtained cancel identically with the non-linear terms of (6.11)) and so leave the 
linear equation, 

where 6’ is defined by 
f :  - 6f’; + 2ikfi N O(e2), 

1 .- 
8 = 3 [ z f i f ;  - ( f o  +.fob, +fl B l l T = = O ,  

The solution that satisfies the boundary conditions is thus 

(6.13) 

(6.14) 

(6.15) 

The constant 6 has a physical significance, since it represents the steady out- 
flow velocity of the fluid to first order at  infinity (i.e.fo+fo at  7 = a). This is 
easy to see by substituting the boundary conditions (6.9a) into (6.11), and 
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comparing the result with (6.13). The tragedy of 6’ is that 8 > 0, and we have an 
outflow, not an inflow, at infinity. The result of this is that, if we choose k to have 
an even lower magnitude than O(e3),  the outer boundary layer given by (6.15) 
is unstable. As k -+ 0, the outer boundary-layer thickness becomes infinite, 
because the convective term alone cannot balance the viscous force, but only 
serve to intensify it. No further analysis is attempted for this case although 
several possibilities suggest themselves : 

(i) The analysis could be continued. If an even larger scaling length is assumed 
in the complementary equation, the viscous terms would become negligible. 
As the overall magnitude of Of;’ would also be reduced, however, it is feasible 
that some balance in the complementary equation is possible, where the balanc- 
ing terms are drawn solely from the non-linear right-hand side of (3.11). 

(ii) Mathematical considerations. One of several assumptions that have been 
made could be incorrect. Principally we have assumed (a)  a similarity solution 
in ?, ( b )  a purely periodic solution, ( c )  an asymptotic solution in E ,  ( d )  that the 
method of matched asymptotic expansions is valid, ( e )  that b = 0 in the inner 
solution (3.8). 

(iii) The intrusion of reality. The flow may be turbulent. Or a solution may 
exist only in a bounded fluid (either radially or azimuthally). Conversely, it  is 
possible that k = 0 could never actually be realized. 

7. The axially bounded case 
Finally, we shall investigate briefly what resonance form occurs, if a second 

disk with no perturbation velocity is present in the fluid at a large distance from 
the first one. We shall actually assume that resonance is of the second type 
( X  = O(l) ) ,  and simply confirm that the scalings of $ 5  lead to a consistent, 
non-zero value for jET. To do this, we shall suppose the fluid can be divided into 
four regions, namely, an inner boundary layer near the first disk (really a modi- 
fied Stokes layer), an outer boundary layer, then a large intermediate region, 
through which the steady velocities remain principally unchanged, and finally 
an Ekman layer at  the second disk. It is assumed that the intermediate region is 
sufficiently large that the harmonic velocities (which die slowly away in a bounded 
domain) are negligible at the far disk. 

Inner boundary layer 

The solution is described in $5. The steady solution has the form (5.6).  To satisfy 
the homogeneous boundary conditions, 

Fl0 = = Cl0 = 0, (7.1) 

it  follows that 
137 J2 - 232 

2 c + Y =  136 . 
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are necessary besides those given in $5. Our object is to determine the steady 
inflow at the far edge of the outer boundary layer: to this end, we must integrate 
(7.4). (It follows from (5.14) that flo+flo+O as q+co.) This is not difficult. 
The boundary conditions are : 

from matching to the inner solution, and thus 

(fro + f 2 d  = i(S0lfL +s;lf ;I -fols;1 -f1JA1) + ( D  + Q (7.6) 

(7.7) D = C - - l  

Hence fio+B on leaving the outer boundary, and this steady velocity will be 
preserved across the interior region, along with the azimuthal perturbation 
velocity of EZ, until the second disk is approached. 

where 8' 

Ekman layer 
The steady velocities are brought to rest at  the second disk by an Ekman layer. 
The solution can be shown to be 

(7.8) 

pl0 = a p e x p  ( F ( z - h ) )  +Jexp  ($(z-h))  +40], 

(;ii( - z-h)  ) ---Jexp l + i  (;ii -(z-h) )] , 
42 

where h is the dimensionless distance between the two disks; the solution quoted 
is a limiting form for large h. H and J are unknown constants and, to satisfy 
the three homogeneous boundary conditions at z = h, it follows that 

42D-&" = 0. (7.9) 

Finally, combining this with (7.2) and (7.7), we deduce that 

1 5 4 2 - 2 9  
34 

< 0, (7.10) % =  

which means the interior rotates at a slower speed than the basic rotational state. 

This paper is part of Ph.D. thesis submitted to the University of London. 
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